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do 12 j=1,ncom
df1dim=df1dim+df (j)*xicom(j)
enddo 12
return
END

CITED REFERENCES AND FURTHER READING:
Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), §2.3. [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Artin Numerical Analysis (London: Academic Press),
Chapter I111.1.7 (by K.W. Brodlie). [2]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
88.7.

10.7 Variable Metric Methods
Multidimensions

The goal ofvariable metric methods, which are sometimes caltpesi-Newton
methods, is not different from the goal of conjugate gradient methods: to accumulat
information from successive line minimizations so thatsuch line minimizations
lead to the exact minimum of a quadratic formAhdimensions. In that case, the
method will also be quadratically convergent for more general smooth functions.

Both variable metric and conjugate gradient methods require that you are able t
compute your function’s gradient, or first partial derivatives, at arbitrary points. The
variable metric approach differs from the conjugate gradient in the way that it storesa
and updates the information that is accumulated. Instead of requiring intermediat
storage on the order @¥, the number of dimensions, it requires a matrix of size
N x N. Generally, for any moderat¥, this is an entirely trivial disadvantage.

On the other hand, there is not, as far as we know, any overwhelming advanta
that the variable metric methods hold over the conjugate gradient techniques, exc
perhaps a historical one. Developed somewhat earlier, and more widely propagate@;
the variable metric methods have by now developed a wider constituency of satisfie
users. Likewise, some fancier implementations of variable metric methods (goin
beyond the scope of this book, see below) have been developed to a greater level
sophistication on issues like the minimization of roundoff error, handling of special
conditions, and so onl\e tend to use variable metric rather than conjugate gradient,
but we have no reason to urge this habit on you.

Variable metric methods come in two main flavors. One i€tae don-Fletcher-
Powell (DFP) algorithm (sometimes referred to as simglletcher-Powell). The
other goes by the nanroyden-Fletcher-Gol dfarb-Shanno (BFGS). The BFGS and
DFP schemes differ only in details of their roundoff error, convergence tolerances,
and similar “dirty” issues which are outside of our scdpel. However, it has
become generally recognized that, empirically, the BFGS scheme is superior in these
details. We will implement BFGS in this section.

As before, we imagine that our arbitrary functigfx) can be locally approx-
imated by the quadratic form of equation (10.6.1). We don’t, however, have any
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10.7 Variable Metric Methods in Multidimensions 419

information about the values of the quadratic form's parameteendb, except
insofar as we can glean such information from our function evaluations and line
minimizations.

The basic idea of the variable metric method is to build up, iteratively, a good
approximation to the inverse Hessian matix !, that is, to construct a sequence
of matricesH; with the property,

lim H; = A~! (10.7.9)
11— 00
Even better if the limit is achieved afté¥ iterations instead ofo.

The reason that variable metric methods are sometimes called quasi-NewtorR
methods can now be explained. Consider finding a minimum by using Newton’s 8
method to search for a zero of the gradient of the function. Near the current point®
X;, we have to second order

LWOD" JU* MMM/:dny

8

FX) = F(X) + (X—=%;) - VF(X;) + (X —%;) - A~ (X—X;) (10.7.2
SO
VIX)=VFIx)+A-(X—X;) (10.7.3

In Newton's method we sé¥ f(x) = 0 to determine the next iteration point:
X—x; = —A"1 VF(x) (10.7.4
The left-hand side is the finite step we need take to get to the exact minimum; th

right-hand side is known once we have accumulated an acddrated ~'.
The “quasi” in quasi-Newton is because we don't use the actual Hessian matrix=
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of f, but instead use our current approximation of it. This is oftbetter than g

using the true Hessian. We can understand this paradoxical result by considering th§

descent directions of f atx;. These are the directiogsalong whichf decreases: g

V f-p < 0. Forthe Newton direction (10.7.4) to be a descent direction, we must have %

®

Vi) (X=%)=—(X—%;)-A-(X=%;) <0 (10.7.5 5

which is true ifA is positive definite. In general, far from a minimum, we have no  §
guarantee that the Hessian is positive definite. Taking the actual Newton step witff 3 :

the real Hessian can move us to points where the functioncigasing in value.
The idea behind quasi-Newton methods is to start with a positive definite, symmetri
approximation toA (usually the unit matrix) and build up the approximatidg’s
in such a way that the matrii; remains positive definite and symmetric. Far from
the minimum, this guarantees that we always move in a downhill direction. Close
to the minimum, the updating formula approaches the true Hessian and we enjo
the quadratic convergence of Newton's method.

When we are not close enough to the minimum, taking the full Newton step
p even with a positive definitéd need not decrease the function; we may move
too far for the quadratic approximation to be valid. All we are guaranteed is that
initially f decreases as we move in the Newton direction. Once again we can use
the backtracking strategy describeds®7 to choose a step along tbeection of
the Newton step, but not necessarily all the way.

%p!sm
3)ISgaM 1ISIA ‘SNOYAD 10 Sy00q sadioay [ealawnN JapIo 01

-auiyoew Jjo BuiAdoo Aue o
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD

(X-790€1-T2S-0 NESI) ONILNINOD DIFILNIIOS 4O 18V IHL 122 NVHLHO4 NI SAdIDIY TvOIHINNN woly ebed sdwes

19Uy YUON

Ol



420 Chapter 10.  Minimization or Maximization of Functions

We won't rigorously derive the DFP algorithm for takimty; into H;, 1; you
can consulf3] for clear derivations. Following Brodlie (ii2]), we will give the
following heuristic motivation of the procedure.

Subtracting equation (10.7.4)f, ; from that same equation &} gives

Xit1 — X3 = A71 . (Vflqu — sz) (1076

whereV f; = V f(X;). Having made the step from to X;+1, we might reasonably
want to require that the new approximatiéh,,; satisfy (10.7.6) as if it were
actually A™!, that is,

Xit1 — X = Hi+1 . (Vfi+1 — Vfl) (1073

We might also imagine that the updating formula should be of the fdrmp; =
H; + correction.

What “objects” are around out of which to construct a correction term? Most

notable are the two vectoss;.; — x; and Vf;.1 — Vf;; and there is alsti;.

There are not infinitely many natural ways of making a matrix out of these objects,

especially if (10.7.7) must hold! One such way, DEP updating formula, is

(Xit1 = Xi) @ (Xi+1 — X)
(Xix1 —Xi) - (Vfix1 = Vi)
Hi- (Vfirn = V)@ [MHi - (Vfiyr — V[
(Vfir1 = Vfi) Hi- (Vfiz1 = Vi)

Hipi=H; +

(10.7.8

where® denotes the “outer” or “direct” product of two vectors, a matrix: Tlie

componentoli®visu,v;. (You mightwantto verify that 10.7.8 does satisfy 10.7.7.)

The BFGSupdating formula is exactly the same, but with one additional term,
oo+ [(Vfixr = V) Hi - (Vfiy1 — Vi) u®u (10.7.9
whereu is defined as the vector
(Xi1 —Xi)
(Xit1 = %i) - (Vi1 = Vfi)

Hi (Vfiy1 =V fi)
(Vfix1 =V fi) - Hi - (Vfiy1 = Vi)

u=

(10.7.10

(You might also verify that this satisfies 10.7.7.)

You will have to take on faith — or else cons(8t for details of — the “deep”
result that equation (10.7.8), with or without (10.7.9), does in fact converge to
in N steps, iff is a quadratic form.

Here now is the routingfpmin that implements the quasi-Newton method, and

useslnsrch from §9.7. As mentioned at the end aéwt in §9.7, this algorithm
can fail if your variables are badly scaled.
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10.7 Variable Metric Methods in Multidimensions 421

SUBROUTINE dfpmin(p,n,gtol,iter,fret,func,dfunc)

INTEGER iter,n,NMAX,ITMAX

REAL fret,gtol,p(n),func,EPS,STPMX,TOLX

PARAMETER (NMAX=50,ITMAX=200,STPMX=100.,EPS=3.e-8,TOLX=4.*EPS)

EXTERNAL dfunc,func

USES df unc, func, | nsrch
Given a starting point p(1:n) that is a vector of length n, the Broyden-Fletcher-Goldfarb-
Shanno variant of Davidon-Fletcher-Powell minimization is performed on a function func,
using its gradient as calculated by a routine dfunc. The convergence requirement on zeroing
the gradient is input as gtol. Returned quantities are p(1:n) (the location of the mini-
mum), iter (the number of iterations that were performed), and fret (the minimum value
of the function). The routine 1nsrch is called to perform approximate line minimizations.
Parameters: NMAX is the maximum anticipated value of n; ITMAX is the maximum allowed
number of iterations; STPMX is the scaled maximum step length allowed in line searches;
TOLX is the convergence criterion on x values.

INTEGER i,its,]

LOGICAL check

REAL den,fac,fad,fae,fp,stpmax,sum,sumdg,sumxi,temp,test,

dg (NMAX) , g (NMAX) ,hdg (NMAX) ,hessin (NMAX,NMAX) ,
pnew (NMAX) ,xi (NMAX)

fp=func (p) Calculate starting function value and gradient,
call dfunc(p,g)
sum=0.
do12 i=1,n and initialize the inverse Hessian to the unit matrix.
dou j=1,n
hessin(i,j)=0.
enddo 11
hessin(i,i)=1.
xi(1)=-g(i) Initial line direction.
sum=sum+p (1) **2
enddo 12
stpmax=STPMX*max (sqrt (sum) ,float(n))
do 27 its=1,ITMAX Main loop over the iterations.
iter=its

call lnsrch(n,p,fp,g,xi,pnew,fret,stpmax,check,func)
The new function evaluation occurs in 1nsrch; save the function value in fp for the next
line search. It is usually safe to ignore the value of check.

fp=fret
do 13 i=1,n
xi(i)=pnew(i)-p(i) Update the line direction,
p(i)=pnew(i) and the current point.
enddo 13
test=0. Test for convergence on Ax.

do 14 i=1,n
temp=abs (xi(i))/max(abs(p(i)),1.)
if (temp.gt.test)test=temp

enddo 14
if (test.1lt.TOLX)return
dois i=1,n Save the old gradient,
dg(i)=g(i)
enddo 15
call dfunc(p,g) and get the new gradient.
test=0. Test for convergence on zero gradient.

den=max(fret,1.)

do 16 i=1,n
temp=abs (g(i))*max(abs(p(i)),1.)/den
if (temp.gt.test)test=temp

enddo 16

if (test.lt.gtol)return

do17 i=1,n Compute difference of gradients,
dg(i)=g(i)-dg(i)

enddo 17

do19 i=1,n and difference times current matrix.
hdg(i)=0.
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422 Chapter 10.  Minimization or Maximization of Functions

doi1s j=1,n
hdg(i)=hdg(i)+hessin(i,j)*dg(j)

enddo 18

enddo 19

fac=0. Calculate dot products for the denominators.

fae=0.

sumdg=0.

sumxi=0.

do21 i=1,n
fac=fac+dg(i)*xi(i)
fae=fae+dg(i)*hdg(i)
sumdg=sumdg+dg (i) **2
sumxi=sumxi+xi(i)**2

enddo 21
if (fac.gt.sqrt (EPS*sumdg*sumxi) )then Skip update if fac not sufficiently positive.
fac=1./fac
fad=1./fae
do22 i=1,n The vector that makes BFGS different from DFP:
dg(i)=fac*xi(i)-fad*hdg(i)
enddo 22
do 24 i=1,n The BFGS updating formula:

do23 j=i,n
hessin(i,j)=hessin(i,j)+fac*xi(i)*xi(j)
—-fad*hdg(i)*hdg(j)+fae*xdg(i)*dg(j)
hessin(j,i)=hessin(i,j)

enddo 23
enddo 24
endif
do26 i=1,n Now calculate the next direction to go,
xi(i)=0.
do2s j=1,n
xi(i)=xi(i)-hessin(i,j)*g(j)
enddo 25
enddo 26
enddo 27 and go back for another iteration.
pause ’too many iterations in dfpmin’
return

END

Quasi-Newton methods likefpmin work well with the approximate line
minimization done bylnsrch. The routinepowell (§10.5) andfrprmn (§10.6),
however, need more accurate line minimization, which is carried out by the routine
linmin.

Advanced Implementations of Variable Metric Methods
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Although rare, it can conceivably happen that roundoff errors cause the rhiattox
become nearly singular or non-positive-definite. This can be serious, because the suppos
search directions might then not lead downhill, and because nearly sifjtddend to give
subsequent;’s that are also nearly singular.

There is a simple fix for this rare problem, the same as was mentioriddia: In case
of any doubt, you shouldestart the algorithm at the claimed minimum point, and see if it
goes anywhere. Simple, but not very elegant. Modern implementations of variable metri
methods deal with the problem in a more sophisticated way.

Instead of building up an approximationAc *, itis possible to build up an approximation
of A itself. Then, instead of calculating the left-hand side of (10.7.4) directly, one solves
the set of linear equations
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A (X=%;) ==V f(X) (10.7.11

_ Atfirst glance this seems like a bad idea, since solving (10.7.11) is a process of order
N?® — and anyway, how does this help the roundoff problem? The trick is not to Atbre
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10.8 Linear Programming and the Simplex Method 423

rather a triangular decomposition Af its Cholesky decomposition (cf. §2.9). The updating
formula used for the Cholesky decomposition/fis of order N* and can be arranged to

guarantee that the matrix remains positive definite and nonsingular, even in the presence of

finite roundoff. This method is due to Gill and Murrfiy2].
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10.8 Linear Programming and the Simplex
Method

The subject oflinear programming, sometimes calledinear optimization,
concernsitself with the following problem: Féfindependentvariables, , . .., zy,
maximize the function

Z =ag1T1 + ap2x2 + -+ aNTN (10.8.])
subject to the primary constraints

X1 Z O, To Z 0, ce TN 2 0 (1083

and simultaneously subject td = m; + ms 4+ mg additional constraintsy; of
them of the form

;1T + T + -+ a;naen < b; (b; > 0) i=1,...,m; (10.8.3
mo Of them of the form
a;121 + ajota + -+ ajnrn > b; >0 j=mi+1,...,m +ms (10.8.9
and ms of them of the form

ax1T1 + aporo + -+ apnyxry = b >0
(10.8.5

k:m1+m2—|—1,...,m1—|—m2—|—m3

The variousz;;'s can have either sign, or be zero. The fact thatiteenust all be
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nonnegative (as indicated by the final inequality in the above three equations) is a

matter of convention only, since you can multiply any contrary inequality-ty
There is no particular significance in the number of constraititbeing less than,
equal to, or greater than the number of unknows



